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Abstract: In this paper area efficient Multiplier architecture is developed using Dadda Multiplier. The proposed Multiplier 

Algorithm takes reduced area than the previous one and the significant delay is also lower than the previous designs. The 

number of slices in the previous designs is 648 and in our proposed Dadda Multiplier architecture utilizes only 402 slices 

then area is reduced up to 30%. As shown in the design as well as the simulation results the proposed Multiplier 

architecture area as well as delay is better.  
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I. INTRODUCTION 

Digital arithmetic operations are very important in the 

design of digital processors and application-specific 

systems. Arithmetic circuits form an important class of 

circuits in digital systems. With the remarkable progress in 

the very large scale integration (VLSI) circuit technology, 

many complex circuits, unthinkable yesterday have become 

easily realizable today. Algorithms that seemed impossible 

to implement now have attractive implementation 

possibilities for the future. This means that not only the 

conventional computer arithmetic methods, but also the 

unconventional ones are worth investigation in new designs. 
 

The notion of real numbers in mathematics is convenient for 

hand computations and formula manipulations. However, 

real numbers are not well-suited for general purpose 

computation, because their numeric representation as a 

string of digits expressed in, say, base 10 can be very long or 

even infinitely long. Examples include π, e, and 1/3. In 

practice, computers store numbers with finite precision. 

Numbers and arithmetic used in scientific computation 

should meet a few general criteria:- 

 Numbers should have modest storage requirements. 

 Arithmetic operations should be efficient to carry.  

 

A level of standardization, or portability, is desirable–results 

obtained on one computer should closely match the results 

of the same computation on other computers Internationally-

standardized methods for representing numbers on 

computers have been established by the IEEE-754 standard 

to satisfy these basic goals [1]. 

 

An arithmetic unit based on IEEE standard for floating point 

numbers has been implemented on FPGA Board. The 

arithmetic unit implemented has a 64-bit processing unit  

 

which allows various arithmetic operations such as, 

Addition, Subtraction, Multiplication, Division and Square 

Root on floating point numbers. Each operation can be 

selected by a particular operation code. Synthesis of the unit 

for the FPGA board has been done using XILINX-ISE. 

 

The IEEE standards mandate exact representations for 

binary single and double precision floating-point formats 

[4], as well as more flexible guidelines for single-extended 

and double-extended formats. Quadruple precision is not yet 

an official standard, although at present, an IEEE working 

group is standardizing it [12]. The IEEE standards have been 

extraordinarily successful in ensuring a level of portability 

for computer arithmetic across a vast array of 

implementations and disparate architectures. Since these 

standards are the basis for virtually all floating-point 

computation, it is important to understand their details. 

 
 

Fig 1: Single Precision Floating-Point IEEE Formats 

 
Fig 2: Double Precision Floating-Point IEEE Formats 
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Fig.1 and Fig.2 illustrates the IEEE standard binary single 

precision floating-point formats, along with the IEEE 

standard for double precision floating-point format. Single 

precision has 1 sign bit, 8 exponent bits, and 23 mantissa 

bits. Double precision has 1 sign bit, 11 exponent bits, and 

52 mantissa bits. The IEEE format requires normalization, 

and since it uses radix 2, it is known a prior that the first bit 

of the mantissa is a 1, which means that it can be implied. 

This implied bit gives IEEE formats an extra bit of mantissa. 

For example, IEEE single precision has effectively 24 bits of 

mantissa, rather than the 23 which are expressed in the 

external representation as shown in Fig 1. 

 

Floating Point Numbers 

The term floating point is derived from the fact that there is 

no fixed number of digits before and after the decimal point, 

that is, the decimal point can float. There are also 

representations in which the number of digits before and 

after the decimal point is set, called fixed-point 

representations. In general, floating point representations are 

slower and less accurate than fixed-point representations, but 

they can handle a larger range of numbers. Floating Point 

Numbers are numbers that can contain a fractional part. For 

e.g. following numbers are the floating point numbers: 3.0, -

111.5, ½, 3E-5 etc. 

 

Floating-point arithmetic is considered an esoteric subject by 

many people. This is rather surprising because floating-point 

is ubiquitous in computer systems. Almost every language 

has a floating-point data type; computers from PC’s to 

supercomputers have floating-point accelerators; most 

compilers will be called upon to compile floating-point 

algorithms from time to time; and virtually every operating 

system must respond to floating-point exceptions such as 

overflow. 

A number representation (called a numeral system in 

mathematics) specifies some way of storing a number that 

may be encoded as a string of digits. In computing, floating 

point describes a system for numerical representation in 

which a string of digits (or bits) represents a rational 

number. The term floating point refers to the fact that the 

radix point (decimal point, or, more commonly in 

computers, binary point) can "float"; that is, it can be placed 

anywhere relative to the significant digits of the number. 

This position is indicated separately in the internal 

representation, and floating-point representation can thus be 

thought of as a computer realization of scientific notation. 

Over the years, several different floating-point 

representations have been used in computers; however, for 

the last ten years the most commonly encountered 

representation is that defined by the IEEE 754 Standard. 

 

The advantage of floating-point representation over fixed-

point (and integer) representation is that it can support a 

much wider range of values. For example, a fixed point 

representation that has seven decimal digits, with the 

decimal point assumed to be positioned after the fifth digit, 

can represent the numbers 12345.67, 8765.43, 123.00, and 

so on, whereas a floating-point representation (such as the 

IEEE 754 decimal32 format) with seven decimal digits 

could in addition represent 1.234567, 123456.7, 

0.00001234567, 1234567000000000, and so on. The 

floating-point format needs slightly more storage (to encode 

the position of the radix point), so when stored in the same 

space, floating-point numbers achieve their greater range at 

the expense of slightly less precision. 

 

II.   FLOATING POINT MULTIPLIER ALGORITHM 

The normalized floating point numbers have the form of  

                        Z= (-1
S
) * 2 

(E - Bias)
 * (1.M).                        

The following algorithm is used to multiply two floating 

point numbers. 

1. Significand multiplication; i.e. (1.M1*1.M2). 

2. Placing the decimal point in the result. 

3. Exponent’s addition; i.e. (E1 + E2 - Bias). 

4. Getting the sign; i.e. s1 XOR s2. 

5. Normalizing the result; i.e. obtaining 1 at the MSB of the 

results’ significand. 

6. Rounding implementation. 

7. Verifying for underflow/overflow occurrence. 

 
Consider the following IEEE-754 single precision floating 

point numbers to perform the multiplication, but the number 

of mantissa bits is reduced for simplification. 

Here only 5 bits are considered while still considering one 

bit for normalized numbers: 

A = 0 10000001 01100 = 5.5, B = 1 10000100 00011 = -35 

By following the algorithm the multiplication of A and B is 

The result after adding two exponents is not true exponent 

and is obtained by subtracting bias value i.e. 127. 

The same is shown in following equations. 

 
From the above analysis bias is added twice so bias has to be 

subtracted once from the result. 
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4. Sign bit of result is extracted by doing XOR operation of 

sign bit of two numbers: 

1 10000110 01.1000000100 

5. Then normalize the result so that there is a 1 just before 

the radix point (decimal point). Moving the radix point one 

place to the left increments the exponent by 1; moving one 

place to the right decrement the exponent by 1. 

6. If the mantissa bits are more than 5 bits (mantissa 

available bits); rounding is needed. If we applied the 

truncation rounding mode then the stored value is: 

1 10000110 10000 

 In Fig.3 shows the block diagram of the Multiplier 

structure; having blocks are Exponent calculator, Mantissa 

Multiplier, Sign bit calculator and the Normalization unit. 

 
                         

Fig.3 Floating Point Multiplier 
Main Blocks of Floating Point Multiplier:- 

There are four main blocks of floating point multiplier are 

Sign, Exponent, Mantissa and the Normalized block. 

A. Sign calculator: 

The main component of Sign calculator is XOR gate. If any 

one of the numbers is negative then result will be negative. 

The result will be positive if two numbers are having same 

sign. The truth table of A XOR B shows that it outputs true 

whenever the inputs differ:  

0 = FALSE, 1 = TRUE 
Table.1 Truth Table of XOR gate 

Input 
Output 

A B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

B. Exponent calculator: 

This sub-block adds the exponents of the two floating point 

numbers and the Bias (1023) is subtracted from the result to 

get true result i.e. EA + EB – bias. In this design the addition 

is done on two 11 bit exponents. 

Half adder: 

 
Fig.4 Logic diagram of Half Adder 

The half-adder adds two inputs bits and generates a carry 

and sum, which are the two outputs of half-adder. The input 

variables of a half adder are called the augends and addend 

bits. The output variables are the sum and carry. The truth 

table for the half adder is: 

0 = FALSE, 1 = TRUE  
Table.2 Truth Table of Half Adder 

Input Output 

A B Sum Carry 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

Full adder: 

 
Fig.5 Block Diagram of 1-bit full adder  

Fig.5 shows the Schematic symbol of a 1-bit full adder with 

Cin and Cout drawn on both the sides of block to emphasize 

their use in a multi-bit adder. The truth table of 1-bit full 

adder is shown below 
Table.3 Truth Table of Full Adder 

Inputs Outputs 

A B Cin Cout S 

0 0 0 0 0 

1 0 0 0 1 

0 1 0 0 1 

1 1 0 1 0 

0 0 1 0 1 

1 0 1 1 0 

0 1 1 1 0 

1 1 1 1 1 

 

One Subtractor (OS): 

 

 

 

 
Fig.6 Block Diagram of 1-bit Subtractor  

 

 

 

 

The one bit subtractor is shown in fig.6 used for subtracting 

the bias. Table shows the truth table for a 1-bit subtractor 

with the input equal to 1 which we will call “one subtractor 

(OS)”. 

http://en.wikipedia.org/wiki/File:Half_Adder.svg
http://en.wikipedia.org/wiki/File:1-bit_full-adder.svg
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Table.4 Truth Table of one bit subtractor

 
C. Mantissa calculation:  

The significand bits of two floating point numbers are 

multiplied. The multiplier used is a Dadda Multiplier. Its 

have 3 steps are:- 

1) Multiplier using logical AND. Wires carries different 

weights. 

2) Reduced the number of partial product. 

3) Group the wires in two numbers and add them.  

D. Normalization unit:   

Every number is always starts with 1, not a zero called 

a normalized number. The result of the significand 

multiplication (intermediate product) is:- 

 The intermediate product is already a normalized 

number then no shift is needed. 

 And the intermediate product is not normalized number 

then it is shifted to the right and the exponent is 

incremented by 1.  

 

III. PROPOSED METHODOLOGY 

Dadda Multiplier 

 
Fig.7 Flow Diagram of 8x8 Dadda Multiplier 

 

Dadda proposed a sequence of matrix heights that are fixed 

to give the minimum number of reduction stages. For Dadda 

Multipliers there are N=8 bits. Dadda Multiplier uses partial 

product bits. 

The calculation diagram for an 8X8 Dadda Multiplier is 

shown in fig.7 the 8x8 multiplier takes 4 reduction stages, 

with matrix height 6, 4, 3 and 2. The reduction uses 35 (3, 2) 

counters (full adder), 7 (2, 2) counters (half adder) and a 14-

bit carry propagate adder. 

 

 

 

 

 

 

 

  
Fig.8 Dot diagram of 8x8 Dadda Multiplier 

•  

•  

•  

•  

• Dots represent partial product bits.  

•  An uncrossed diagonal line represents the output of a FULL 

ADDER. 

•  A crossed diagonal line represents the output of a HALF 

ADDER.  

The total delay for the generation of the final product is the 

sum of one AND gate delay, one (3, 2) counter delay for 

each of the four reduction stages. 

IV. RESULT AND DISCUSSION 

The proposed Double Precision Floating Point Dadda 

Multiplier is implemented on XILINX 13.1. The comparison 

table shown below:- 
Table.5: Device utilization summary of Double Precision Floating Point 

Dadda Multiplier 

Logic Utilization  

 

Proposed 

 

Existing 

Number of slice registers 

(Flip-Flops)  

402 648 

Number of slice LUTs  6,825 2181 

Number of occupied slices  2,463 1998 

Number of bonded IOBs  192 203 
 

Table.6: Area and Delay of Double Precision Floating Point Multiplier 

Device 

Parameters 

Present 

Work 

Previous 

Work 

 

Previous 

Work 

Devices 

Virtex-6 
xc6vlx75tl-

1lff484 

Virtex-6 
xc6vlx75t-

3ff484 

 
Virtex-5 

Techniques 

used 

Dadda 

Algorithm 

Array 

Algorithm 

Vedic 

Multiplication 

Number of 

bonded IOBs 

 

192 

 

203 

 

192 

Area (In Slices) 402 648 - 

Delay (ns) 28.825 - 
 

44.565 

The Double Precision Floating Point Multiplier using Dadda 

Algorithm has been coded in Verilog. For simulation and 

synthesis purpose, Xilinx Integrated Software Environment 

ISE 13.1 software tool has been used. The Double Precision 
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Floating Point Dadda Multiplier is targeting on Xilinx 

Virtex-6 xc6vlx75tl-lLff484 device. The RTL view and 

simulation result are shown in following section. 

 
Fig.9 RTL view of Double Precision Floating Point Multiplier  

 
Fig.10 Simulation Result of Double Precision Floating Point Multiplier 

 

V. CONCLUSION AND FUTURE WORK 

The Double Precision proposed Dadda Multiplier 

architecture is implemented on FPGA vertex board and the 

device utilization summary is shown in the previous section. 

The architecture found area efficient as it utilizes only 402 

slices against the 648 slices on the previous Multiplier 

design. The proposed Multiplier architecture is capable of 

calculating 64 bit numbers. In the future designs the adder 

architectures will help to reduce the device utilization to 

large extent because if the components of Multiplier 

architecture is efficient than the whole architecture will be 

definitely better in terms of delay as well as area. 
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