
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4527 120

A High Speed Binary Floating Point Multiplier

using Dadda Algorithm

Prakhi Agrawal
1
, Prof. Shravan Sable

2
, Dr. Rita Jain

3

M-Tech Research Scholar, Department of Electronics & Communication Engineering

Lakshmi Narain College of Technology, Bhopal, (M.P.)
 1

Research Guide, Department of Electronics & Communication Engineering

Lakshmi Narain College of Technology, Bhopal, (M.P.)
 2

 HOD, Department of Electronics & Communication Engineering

Lakshmi Narain College of Technology, Bhopal, (M.P.)
 3

Abstract: In this paper area efficient Multiplier architecture is developed using Dadda Multiplier. The proposed Multiplier

Algorithm takes reduced area than the previous one and the significant delay is also lower than the previous designs. The

number of slices in the previous designs is 648 and in our proposed Dadda Multiplier architecture utilizes only 402 slices

then area is reduced up to 30%. As shown in the design as well as the simulation results the proposed Multiplier

architecture area as well as delay is better.

Keywords: Double Precision, Dadda Multiplier, Floating Point, Area Efficient.

I. INTRODUCTION

Digital arithmetic operations are very important in the

design of digital processors and application-specific

systems. Arithmetic circuits form an important class of

circuits in digital systems. With the remarkable progress in

the very large scale integration (VLSI) circuit technology,

many complex circuits, unthinkable yesterday have become

easily realizable today. Algorithms that seemed impossible

to implement now have attractive implementation

possibilities for the future. This means that not only the

conventional computer arithmetic methods, but also the

unconventional ones are worth investigation in new designs.

The notion of real numbers in mathematics is convenient for

hand computations and formula manipulations. However,

real numbers are not well-suited for general purpose

computation, because their numeric representation as a

string of digits expressed in, say, base 10 can be very long or

even infinitely long. Examples include π, e, and 1/3. In

practice, computers store numbers with finite precision.

Numbers and arithmetic used in scientific computation

should meet a few general criteria:-

 Numbers should have modest storage requirements.

 Arithmetic operations should be efficient to carry.

A level of standardization, or portability, is desirable–results

obtained on one computer should closely match the results

of the same computation on other computers Internationally-

standardized methods for representing numbers on

computers have been established by the IEEE-754 standard

to satisfy these basic goals [1].

An arithmetic unit based on IEEE standard for floating point

numbers has been implemented on FPGA Board. The

arithmetic unit implemented has a 64-bit processing unit

which allows various arithmetic operations such as,

Addition, Subtraction, Multiplication, Division and Square

Root on floating point numbers. Each operation can be

selected by a particular operation code. Synthesis of the unit

for the FPGA board has been done using XILINX-ISE.

The IEEE standards mandate exact representations for

binary single and double precision floating-point formats

[4], as well as more flexible guidelines for single-extended

and double-extended formats. Quadruple precision is not yet

an official standard, although at present, an IEEE working

group is standardizing it [12]. The IEEE standards have been

extraordinarily successful in ensuring a level of portability

for computer arithmetic across a vast array of

implementations and disparate architectures. Since these

standards are the basis for virtually all floating-point

computation, it is important to understand their details.

Fig 1: Single Precision Floating-Point IEEE Formats

Fig 2: Double Precision Floating-Point IEEE Formats

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4527 121

Fig.1 and Fig.2 illustrates the IEEE standard binary single

precision floating-point formats, along with the IEEE

standard for double precision floating-point format. Single

precision has 1 sign bit, 8 exponent bits, and 23 mantissa

bits. Double precision has 1 sign bit, 11 exponent bits, and

52 mantissa bits. The IEEE format requires normalization,

and since it uses radix 2, it is known a prior that the first bit

of the mantissa is a 1, which means that it can be implied.

This implied bit gives IEEE formats an extra bit of mantissa.

For example, IEEE single precision has effectively 24 bits of

mantissa, rather than the 23 which are expressed in the

external representation as shown in Fig 1.

Floating Point Numbers

The term floating point is derived from the fact that there is

no fixed number of digits before and after the decimal point,

that is, the decimal point can float. There are also

representations in which the number of digits before and

after the decimal point is set, called fixed-point

representations. In general, floating point representations are

slower and less accurate than fixed-point representations, but

they can handle a larger range of numbers. Floating Point

Numbers are numbers that can contain a fractional part. For

e.g. following numbers are the floating point numbers: 3.0, -

111.5, ½, 3E-5 etc.

Floating-point arithmetic is considered an esoteric subject by

many people. This is rather surprising because floating-point

is ubiquitous in computer systems. Almost every language

has a floating-point data type; computers from PC’s to

supercomputers have floating-point accelerators; most

compilers will be called upon to compile floating-point

algorithms from time to time; and virtually every operating

system must respond to floating-point exceptions such as

overflow.

A number representation (called a numeral system in

mathematics) specifies some way of storing a number that

may be encoded as a string of digits. In computing, floating

point describes a system for numerical representation in

which a string of digits (or bits) represents a rational

number. The term floating point refers to the fact that the

radix point (decimal point, or, more commonly in

computers, binary point) can "float"; that is, it can be placed

anywhere relative to the significant digits of the number.

This position is indicated separately in the internal

representation, and floating-point representation can thus be

thought of as a computer realization of scientific notation.

Over the years, several different floating-point

representations have been used in computers; however, for

the last ten years the most commonly encountered

representation is that defined by the IEEE 754 Standard.

The advantage of floating-point representation over fixed-

point (and integer) representation is that it can support a

much wider range of values. For example, a fixed point

representation that has seven decimal digits, with the

decimal point assumed to be positioned after the fifth digit,

can represent the numbers 12345.67, 8765.43, 123.00, and

so on, whereas a floating-point representation (such as the

IEEE 754 decimal32 format) with seven decimal digits

could in addition represent 1.234567, 123456.7,

0.00001234567, 1234567000000000, and so on. The

floating-point format needs slightly more storage (to encode

the position of the radix point), so when stored in the same

space, floating-point numbers achieve their greater range at

the expense of slightly less precision.

II. FLOATING POINT MULTIPLIER ALGORITHM

The normalized floating point numbers have the form of

 Z= (-1
S
) * 2

(E - Bias)
 * (1.M).

The following algorithm is used to multiply two floating

point numbers.

1. Significand multiplication; i.e. (1.M1*1.M2).

2. Placing the decimal point in the result.

3. Exponent’s addition; i.e. (E1 + E2 - Bias).

4. Getting the sign; i.e. s1 XOR s2.

5. Normalizing the result; i.e. obtaining 1 at the MSB of the

results’ significand.

6. Rounding implementation.

7. Verifying for underflow/overflow occurrence.

Consider the following IEEE-754 single precision floating

point numbers to perform the multiplication, but the number

of mantissa bits is reduced for simplification.

Here only 5 bits are considered while still considering one

bit for normalized numbers:

A = 0 10000001 01100 = 5.5, B = 1 10000100 00011 = -35

By following the algorithm the multiplication of A and B is

The result after adding two exponents is not true exponent

and is obtained by subtracting bias value i.e. 127.

The same is shown in following equations.

From the above analysis bias is added twice so bias has to be

subtracted once from the result.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4527 122

4. Sign bit of result is extracted by doing XOR operation of

sign bit of two numbers:

1 10000110 01.1000000100

5. Then normalize the result so that there is a 1 just before

the radix point (decimal point). Moving the radix point one

place to the left increments the exponent by 1; moving one

place to the right decrement the exponent by 1.

6. If the mantissa bits are more than 5 bits (mantissa

available bits); rounding is needed. If we applied the

truncation rounding mode then the stored value is:

1 10000110 10000

 In Fig.3 shows the block diagram of the Multiplier

structure; having blocks are Exponent calculator, Mantissa

Multiplier, Sign bit calculator and the Normalization unit.

Fig.3 Floating Point Multiplier
Main Blocks of Floating Point Multiplier:-

There are four main blocks of floating point multiplier are

Sign, Exponent, Mantissa and the Normalized block.

A. Sign calculator:

The main component of Sign calculator is XOR gate. If any

one of the numbers is negative then result will be negative.

The result will be positive if two numbers are having same

sign. The truth table of A XOR B shows that it outputs true

whenever the inputs differ:

0 = FALSE, 1 = TRUE
Table.1 Truth Table of XOR gate

Input
Output

A B

0 0 0

0 1 1

1 0 1

1 1 0

B. Exponent calculator:

This sub-block adds the exponents of the two floating point

numbers and the Bias (1023) is subtracted from the result to

get true result i.e. EA + EB – bias. In this design the addition

is done on two 11 bit exponents.

Half adder:

Fig.4 Logic diagram of Half Adder

The half-adder adds two inputs bits and generates a carry

and sum, which are the two outputs of half-adder. The input

variables of a half adder are called the augends and addend

bits. The output variables are the sum and carry. The truth

table for the half adder is:

0 = FALSE, 1 = TRUE
Table.2 Truth Table of Half Adder

Input Output

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Full adder:

Fig.5 Block Diagram of 1-bit full adder

Fig.5 shows the Schematic symbol of a 1-bit full adder with

Cin and Cout drawn on both the sides of block to emphasize

their use in a multi-bit adder. The truth table of 1-bit full

adder is shown below
Table.3 Truth Table of Full Adder

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

One Subtractor (OS):

Fig.6 Block Diagram of 1-bit Subtractor

The one bit subtractor is shown in fig.6 used for subtracting

the bias. Table shows the truth table for a 1-bit subtractor

with the input equal to 1 which we will call “one subtractor

(OS)”.

http://en.wikipedia.org/wiki/File:Half_Adder.svg
http://en.wikipedia.org/wiki/File:1-bit_full-adder.svg

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4527 123

Table.4 Truth Table of one bit subtractor

C. Mantissa calculation:

The significand bits of two floating point numbers are

multiplied. The multiplier used is a Dadda Multiplier. Its

have 3 steps are:-

1) Multiplier using logical AND. Wires carries different

weights.

2) Reduced the number of partial product.

3) Group the wires in two numbers and add them.

D. Normalization unit:

Every number is always starts with 1, not a zero called

a normalized number. The result of the significand

multiplication (intermediate product) is:-

 The intermediate product is already a normalized

number then no shift is needed.

 And the intermediate product is not normalized number

then it is shifted to the right and the exponent is

incremented by 1.

III. PROPOSED METHODOLOGY

Dadda Multiplier

Fig.7 Flow Diagram of 8x8 Dadda Multiplier

Dadda proposed a sequence of matrix heights that are fixed

to give the minimum number of reduction stages. For Dadda

Multipliers there are N=8 bits. Dadda Multiplier uses partial

product bits.

The calculation diagram for an 8X8 Dadda Multiplier is

shown in fig.7 the 8x8 multiplier takes 4 reduction stages,

with matrix height 6, 4, 3 and 2. The reduction uses 35 (3, 2)

counters (full adder), 7 (2, 2) counters (half adder) and a 14-

bit carry propagate adder.

Fig.8 Dot diagram of 8x8 Dadda Multiplier

•

•

•

•

• Dots represent partial product bits.

• An uncrossed diagonal line represents the output of a FULL

ADDER.

• A crossed diagonal line represents the output of a HALF

ADDER.

The total delay for the generation of the final product is the

sum of one AND gate delay, one (3, 2) counter delay for

each of the four reduction stages.

IV. RESULT AND DISCUSSION

The proposed Double Precision Floating Point Dadda

Multiplier is implemented on XILINX 13.1. The comparison

table shown below:-
Table.5: Device utilization summary of Double Precision Floating Point

Dadda Multiplier

Logic Utilization

Proposed

Existing

Number of slice registers

(Flip-Flops)

402 648

Number of slice LUTs 6,825 2181

Number of occupied slices 2,463 1998

Number of bonded IOBs 192 203

Table.6: Area and Delay of Double Precision Floating Point Multiplier

Device

Parameters

Present

Work

Previous

Work

Previous

Work

Devices

Virtex-6
xc6vlx75tl-

1lff484

Virtex-6
xc6vlx75t-

3ff484

Virtex-5

Techniques

used

Dadda

Algorithm

Array

Algorithm

Vedic

Multiplication

Number of

bonded IOBs

192

203

192

Area (In Slices) 402 648 -

Delay (ns) 28.825 -

44.565

The Double Precision Floating Point Multiplier using Dadda

Algorithm has been coded in Verilog. For simulation and

synthesis purpose, Xilinx Integrated Software Environment

ISE 13.1 software tool has been used. The Double Precision

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4527 124

Floating Point Dadda Multiplier is targeting on Xilinx

Virtex-6 xc6vlx75tl-lLff484 device. The RTL view and

simulation result are shown in following section.

Fig.9 RTL view of Double Precision Floating Point Multiplier

Fig.10 Simulation Result of Double Precision Floating Point Multiplier

V. CONCLUSION AND FUTURE WORK

The Double Precision proposed Dadda Multiplier

architecture is implemented on FPGA vertex board and the

device utilization summary is shown in the previous section.

The architecture found area efficient as it utilizes only 402

slices against the 648 slices on the previous Multiplier

design. The proposed Multiplier architecture is capable of

calculating 64 bit numbers. In the future designs the adder

architectures will help to reduce the device utilization to

large extent because if the components of Multiplier

architecture is efficient than the whole architecture will be

definitely better in terms of delay as well as area.

REFERENCES
[1] Ramesh, A.P.; Tilak, A.V.N.; Prasad, A.M., "An FPGA based high

speed IEEE-754 double precision floating point multiplier using

Verilog," Emerging Trends in VLSI, Embedded System, Nano
Electronics and Telecommunication System (ICEVENT), 2013 IEEE

International Conference on , vol., no., pp.1,5, 7-9 Jan. 2013.

[2] Neela, G.; Draper, J., "A multi-mode energy-efficient double-precision
floating-point multiplier," Circuits and Systems (MWSCAS), 2014 IEEE

57th International Midwest Symposium on , vol., no., pp.29,32, 3-6 Aug. 2014.

[3] Nagar, K.K.; Bakos, J.D., "A Sparse Matrix Personality for the Convey
HC-1," Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE

19th Annual International Symposium on , vol., no., pp.1,8, 1-3 May 2011.

[4] Su Bo; Wang Zhiying; Huang Libo; Shi Wei; Wang Yourui, "Reducing
Power Consumption of Floating-Point Multiplier via Asynchronous

Technique," Computational and Information Sciences (ICCIS), 2012

Fourth International Conference on , vol., no., pp.1360,1363, 17-19 Aug. 2012.
[5] Mohamed AI-Ashraf)', Ashraf Salem, Wagdy Anis., "An Efficient

Implementation of Floating Point Multiplier", Saudi International

Electronics, Communications and Photonics Conference (SIECPC), pp.
1-5,24-26 April 2011

[6] Tan, D.; Lemonds, C.E.; Schulte, M.J., "Low-Power Multiple-Precision

Iterative Floating-Point Multiplier with SIMD Support," Computers,
IEEE Transactions on , vol.58, no.2, pp.175,187, Feb. 2009.

[7] Yee Jern Chong; Parameswaran, S., "Configurable Multimode
Embedded Floating-Point Units for FPGAs," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on , vol.19, no.11,

pp.2033,2044, Nov. 2011

[8] Manolopoulos, K.; Reisis, D.; Chouliaras, V.A., "An efficient multiple
precision floating-point multiplier," Electronics, Circuits and Systems

(ICECS), 2011 18th IEEE International Conference on , vol., no.,

pp.153,156, 11-14 Dec. 2011.
[9] Ozbilen, M.M.; Gok, M., "A single/double precision floating-point

reciprocal unit design for multimedia applications," Electrical and

Electronics Engineering, 2009. ELECO 2009. International
Conference on , vol., no., pp.II-352,II-356, 5-8 Nov. 2009.

[10] Xin Fang; Leeser, M., "Vendor agnostic, high performance, double

precision Floating Point division for FPGAs," High Performance
Extreme Computing Conference (HPEC), 2013 IEEE , vol., no., pp.1,5,

10-12 Sept. 2013.

[11] Inwook Kong; Swartzlander, E.E., "A Rounding Method to Reduce the
Required Multiplier Precision for Goldschmidt Division," Computers,

IEEE Transactions on , vol.59, no.12, pp.1703,1708, Dec. 2010.

[12] Zichu Qi; Qi Guo; Ge Zhang; Xiangku Li; Weiwu Hu, "Design of
Low-Cost High-Performance Floating-Point Fused Multiply-Add with

Reduced Power," VLSI Design, 2010. VLSID '10. 23rd International

Conference on , vol., no., pp.206,211, 3-7 Jan. 2010
[13] Mahakalkar, Sushma S.; Haridas, Sanjay L., "Design of High

Performance IEEE754 Floating Point Multiplier Using Vedic

Mathematics," Computational Intelligence and Communication
Networks (CICN), 2014 International Conference on , vol., no.,

pp.985,988, 14-16 Nov. 2014.

[14] Hang Zhang; Wei Zhang; Lach, J., "A low-power accuracy-
configurable floating point multiplier," Computer Design (ICCD), 2014

32nd IEEE International Conference on , vol., no., pp.48,54, 19-22 Oct. 2014.

[15] Sheikh, B.R.; Manohar, R., "An Asynchronous Floating-Point
Multiplier," Asynchronous Circuits and Systems (ASYNC), 2012 18th

IEEE International Symposium on , vol., no., pp.89,96, 7-9 May 2012.

[16] Kumar, Y.; Sharma, R.K., "Clock-less Design for Reconfigurable
Floating Point Multiplier," Computational Intelligence, Modelling and

Simulation (CIMSiM), 2011 Third International Conference on , vol.,

no., pp.222,226, 20-22 Sept. 2011.
[17] Brunie, N.; de Dinechin, F.; de Dinechin, B., "A mixed-precision fused

multiply and add," Signals, Systems and Computers (ASILOMAR),

2011 Conference Record of the Forty Fifth Asilomar Conference on ,
vol., no., pp.165,169, 6-9 Nov. 2011.

[18] Baluni, A.; Merchant, F.; Nandy, S.K.; Balakrishnan, S., "A
Fully Pipelined Modular Multiple Precision Floating Point Multiplier

with Vector Support," Electronic System Design (ISED), 2011

International Symposium on , vol., no., pp.45,50, 19-21 Dec. 2011.

